

FROM DIVESITE TO BENCH TO BEDSIDE

HOW DIVING MEDICINE CAN HELP CANCER PATIENTS

FRAUKE TILLMANS

SBMHS / BVOOG 13th November 2013 Brussels

WHY ARE WE INTERESTED IN CANCER?

- Cancer is the leading cause of death worldwide (2nd in the US)
- Most common cancers diagnosed in Men:
 - 1. Lung
 - 2. Prostate
 - 3. Colon
- Most common cancers diagnosed in Women:
 - 1. Breast
 - 2. Colon
 - 3. Cervix
- Cancer deaths per year: 7.6 Million →
- Cancer survivors worldwide: 28 Million

WHAT IS CANCER?

- abnormal and unregulated replication, growth and activity
- Alterations in DNA or environmental factors (disrupting DNA and cellular function)
- Resistance to apoptosis (programmed cell death)

→ results in tissue masses (tumors)

PREVENT-DIAGNOSE-TREAT-PREVENT

- Regular Health Maintenance:
 - Colonoscopy
 - Mammography
 - Cervical Cytology
- When in doubt:
 - microscopic evaluation of biopsied tissue
 - cytology
 - computerized tomography (CT)
 - positron emission tomography (PET)
 - magnetic resonance imaging (MRI)
 - surgical exploration

PREVENT-DIAGNOSE-TREAT-PREVENT

- Treatment(s):
 - Surgery
 - Chemotherapy
 - Radiation
 - Bone marrow transplantation
- Depending on: size, grade/stage, location, tumor genetics (tumor type/sensitivity to treatment), likelihood of treatment success, risk of treatment, probability of recurrence

- Decreasing Risk of Reoccurrence:
 - LIFESTYLE CHANGES

TRANSIENT NORMOBARIC HYPEROXIA

Oxygen partial pressure changes

TRANSIENT NORMOBARIC HYPEROXIA

_

WHAT CAN NORMOBARIC OXYGEN DO?

ERYTHROPOIETIN (EPO)

- Glycoprotein hormone
- Red blood cell production
- Cytokine (Signalling Molecule)
- Performance enhancing drug

SERUM EPO-CONCENTRATION AFTER 2H OF 100% O₂

Healthy volunteers, 2h Oxygen 100%, each volunteer functioned as his own control

SERUM EPO CONCENTRATION

Normobaric Oxygenation

Hyperbaric Oxygenation

Balestra et al. 2006

DOES IT WORK ON HEMOGLOBIN? A CASE STUDY

Balestra et al. 2010

AND WHAT ABOUT RED BLOOD CELLS?

reticulocyte count in non-tranfused patients after hip surgery. ns = not significant. ***P b 0.001 for between-group comparison. 30 min. O_2 every postoperative day. (no hematocrit or hemoglobin changes until day 7.)

HOW TO EXPLAIN THIS?

THE NORMOBARIC OXYGEN PARADOX PART I – THE HEALTHY CELL

HIF1-ALPHA

EXPRESSION OF HIF1-alpha AFTER 2H NORMOBARIC HYPEROXIC EXPOSURE

Modulation of HIF1-a in human umbilical vein endothelial cells (HUVEC) exposed to hyperoxia (32% O2) for 2 h and then recovered to normoxia for following 6 h.

THE NORMOBARIC OXYGEN PARADOX PART II – THE CANCER CELL

HAS THIS BEEN TRIED?

CANCER AND OXYGEN

(CLINICAL TRIALS FROM THE LITERATURE)

HBO

- Hyperbaric oxygenation results in a significant increased oxygen concentration within solid tumors (2002, Becker)
- Consensus that HBO does not have cancerpromoting or accelerating properties (Review 1993, Feldmeier)

NBO

- Breast cancer: improved outcome for patient after chemotherapy with NBO (2007, Burk)
- Breast cancer reduction in tumour size after 2h O₂ every 3rd day (Raa, 2007)

BREAST CANCER BEFORE AND AFTER NORMOBARIC HYPEROXIA

Central Tissue

Peripheral Tissue

Raa et al. 2007

TUMOR GROWTH AFTER NORMOBARIC AND HYPEROXIC OXYGENATION

The effect of normoxic and hyperoxic treatment on tumor growth compared to controls and 5-FU treated. Treatments were given on day 1, 4, 7 and 10. Values represent means ± SE.

Raa et al. 2007

Note: the 2bar – Exposure was from external experiment, so no statistics available.

OXYGEN PLAYS A KEY ROLE IN CANCER AND IN DIVING

PATHWAYS INVOLVED IN DIVING AND CANCER

- Immune Response
 - Inflammation and release of ROS
 - Cytokine regulation
 - Increase in white blood cells
- Apoptosis and Anti-Apoptosis
- Mitochondrial Reaction to Oxygen Exposure and Energy Demands

Intrinsic pathway

Apoptosis

Extrinsic pathway

LEUKEMIC T-CELLS 65% OXYGEN FOR 18H

Cleaved Caspase-3
Apoptosis marker in
leukemic T-cells (Jurkat)

Bcl-xL
Anti-Apoptosis marker in leukemic T-cells (Jurkat)

CANCER AND OXIDATIVE STRESS

- Chemo- and Radiotherapy influence ROS modulation
- PRO-oxidant therapies to recover apoptotic capacity of the cell
- Antioxidant overexpression results in increased tumor size and thus to a decrease in apoptosis
- → We need ROS as signalling molecules, transcription factors,

Further Reading: Davis W (2001)

DNA DAMAGE IN DIVING

Extracted Lymphocytes from healthy volunteers exposed to oxygen over several hours. % of cells with DNA-damage were calculated.

WHO IS RESPONSIBLE FOR ALL THE FREE RADICALS?

MITOCHONDRIA AND CANCER

- 1924: Warberg effect / Pasteur effect
- 1950s: Weinhouse: mitochondrial function in cancer cells remains normal
- 1972, Eakin: mitochondrial dysfunctions exist in some tumors but this is not a hallmark of cancer.
- 1979, Reizer: cancer cells derive 96% of their ATP from oxidative phosphorylation using glutamine as energy substrate
- 2004, Carew: increased mtDNA content is reported in chronic lymphocytic leukemias

CANCER CELLS ARE MORE STRESSED

ROS ACTIVATE THE IMMUNE SYSTEM

ACUTE LEUKOCYTE RESPONSES TO SCUBA DIVING

Table 2. Selected blood cell associations for genes that were down- and upregulated after scuba diving

Cell Types	Genes (n) in		
	Data	Reference	P Value
Downregula	tion		
Activated T cells, CD8+ CD45.1+	65	387	3.514e-18
NK cells, NK1.1+ TCRb- Ly49H+	61	370	1.747e-16
NK cells, NK1.1+ CD3- Ly49C/I+	62	385	2.913e-16
Upregulation	on		
Neutrophils, CD11b+ Ly6-G+	54	418	5.072e-20
Macrophages, CD45+ F4/80+ CD11b+	38	402	6.142e-9
Classical monocytes HMCII-, CD115+			
B220- CD43+ Ly6C+	36	408	1.737e-7

BACK TO REACTIVE OXYGEN

DO WE NEED PROTECTION?

N-ACETYL-CYSTEINE (AN UNDER-UTILIZED FRIEND)

- Anti-Oxidant Nutrition Supplement
- Protects healthy cells from chemo- and radiation (DNA protection)
- Used in many diseases (COPD, Diabetes,...) and as cancer preventive medicine

TAKE HOME MESSAGE

- Can hyperbaric oxygen help your patients?
 - There is controverse scientific evidence that cancer patients profit from HBO, but it is overall agreed that it does not do harm.
- Can normobaric oxygen help your patients?
 - Very good results in Breast Cancer and first promising Leukemia trials, but further research to investigate the underlying mechanisms is needed.
 - Every 2-3 days seems to be more promising than every day.
- All cancers are equal, but some cancers are more equal than others

TAKE HOME MESSAGES

- Overlapping Research in Diving and Cancer
 - Immune system activation
 - Increased ROS production
 - Apoptotic pathway induction, inhibition and protection
 - (reversible) DNA disruption
- Understanding the underlying mechanisms is the key to introducing new treatments
- Divers are very good guinea-pigs!

TEAM BRUSSELS

left to right: Walter Hemelryck, Dr. Miroslav Rozloznik, Frauke Tillmans, Prof. Dr. Costantino Balestra, Virginie Papadopoulou, Dr. Sigrid Theunissen

COLLABORATORS

Prof. Dr. Radermacher Prof. Dr, Calzia Dr. David DeBels Dr. Francis Corazza Bettina Stahl Rosemarie Mayer

ulm university universität **uu u u**

This Presentation was part of the Marie-Curie initial training program "PHYPODE" financed by the European Union FP7 framework

Research Focus in Brussels:

- Diving Physiology
 - DCI, Inert Gas Narcosis, Apnea,...
- Exercise Physiology
- Anatomy
- Altitude Physiology
- Free Radicals (Oxidative and Nitrosative Stress)
- Cellular Function and Dysfunction

THANK YOU

- Dipl. Biol. Frauke Tillmans
 - Early Stage Researcher, PHYPODE Project, Brüssel
 - PhD student University of Ulm, Germany
- Cert. European Scientific Diver, Supervisor of Sc.Div.
- CMAS-Instr**, NAUI Instructor, SSI AOWI
- Emergeny Medical Technician
- ERC Provider and First Aid Instructor

phypode@frauke-tillmans.de

PICTURE SOURCES

- Slide 1: depositphotos, www.PHYPODE.org
- Slide 2: depositphotos
- Slide 3: avonro.info, thepresidentpost.com, en.wikipedia.org
- Slide 7: notfall-symposium.de, dan-europe.org, news4jax.com, 123rf.com, writerscafe.org, kernunited.blogspot.com,
- Slide 9: interactive-biology.org
- Slide 16: Arthritis research and therapy
- Slide 25: anti-agingfirewalls.com
- Slide 27&31: sfrbm.org
- Slide 30: photo-dictionary.com
- Slide 36: drugstore.com
- If you are interested in any full text publications cited in this presentation, E-Mail me and I will happily provide them for you.

SIDE NOTE FOR THE DIVING PHYSICIANS:

IS YOUR PATIENT "FIT TO DIVE"?

CONSIDER...

- Patient diagnosed and currently treated:
 - potential to affect critical organ systems (brain, lungs, colon, kidney) → NOT ftd
 - fatigue, immunosuppression, bleeding or the potential need for urgent medical support? → NOT ftd
- Patient recovering from treatment
 - Surgery: Follow conservative postsurgical guidelines
 - Radiation and Chemo: return to "normal" stamina/fitness levels
- If you are not an oncologist, get in touch with one!